Evaluation of Distance Measures For NMF-Based Face Image Applications

نویسندگان

  • Yun Xue
  • Chong Sze Tong
  • TieChen Li
چکیده

Non-negative matrix factorization (NMF) is an increasingly popular feature extraction method. Since it is designed to fit training samples using linear combination of non-negative basis vectors, it is particular suitable for image applications as it affords intuitive localized interpretations. However, in this space defined by the NMF basis images, there has not been any systematic research to identify suitable distance measure for NMF-based data classification. In this paper, the performance of 19 distance measures between feature vectors is evaluated based on the result of the NMF algorithm for face recognition, which include most of the standard distance measures used in face recognition, as well as two new non-negative vector similarity coefficientbased (NVSC) distances that we recommend for use in NMFbased pattern recognition. Recognition experiments are performed using the CMU AMP Face Expression database, CBCL2 database, MIT-CBCL database, YaleB database, and FERET database. We also compared the performance of NMF with Eigenface method and showed that the NMF algorithm using the NVSC distance yielded the best recognition results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Iterative Weighted Non-smooth Non-negative Matrix Factorization for Face Recognition

Non-negative Matrix Factorization (NMF) is a part-based image representation method. It comes from the intuitive idea that entire face image can be constructed by combining several parts. In this paper, we propose a framework for face recognition by finding localized, part-based representations, denoted “Iterative weighted non-smooth non-negative matrix factorization” (IWNS-NMF). A new cost fun...

متن کامل

Evaluation of Similarity Measures for Template Matching

Image matching is a critical process in various photogrammetry, computer vision and remote sensing applications such as image registration, 3D model reconstruction, change detection, image fusion, pattern recognition, autonomous navigation, and digital elevation model (DEM) generation and orientation. The primary goal of the image matching process is to establish the correspondence between two ...

متن کامل

Improving LNMF Performance of Facial Expression Recognition via Significant Parts Extraction using Shapley Value

Nonnegative Matrix Factorization (NMF) algorithms have been utilized in a wide range of real applications. NMF is done by several researchers to its part based representation property especially in the facial expression recognition problem. It decomposes a face image into its essential parts (e.g. nose, lips, etc.) but in all previous attempts, it is neglected that all features achieved by NMF ...

متن کامل

Nonnegative matrix factorization for segmentation analysis

The conducted research project is concerned with image segmentation – one of the central problems of image analysis. A new model of segmented image is proposed and used to develop tools for analysis of image segmentations: image specific evaluation of segmentation algorithms’ performance, extraction of image segment descriptors, and extraction of image segments. Prevalent segmentation models ar...

متن کامل

Non-negative Matrix Factorization, A New Tool for Feature Extraction: Theory and Applications

Despite its relative novelty, non-negative matrix factorization (NMF) method knew a huge interest from the scientific community, due to its simplicity and intuitive decomposition. Plenty of applications benefited from it, including image processing (face, medical, etc.), audio data processing or text mining and decomposition. This paper briefly describes the underlaying mathematical NMF theory ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • JCP

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014